2022年成人高等学校招生全国统一考试高起点
数学(理工农医类)- (网友回忆版)
本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分。考试时间120分钟。
第I卷(选择题,共85分)
一、选择题(本大题共17小题,每小题5分,共85分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合M={ xlx-2l<1},N={ xl x>2},则M∩N=( C )
A.( xl 1<x<3} B. (x l x> 2}
C.{ xl 2<x<3} D.{xl<x<2}
2.设函数f(x)=x2,则f(x+1)=(A )
3.下列函数中,为奇函数的是(B)
A、y=cosx2 B、y=sin x
C、y=24 D、y=x+1
4.设a是第三象限角,若cos a=-(√ 2 ) / 2,则sin a= ( D )
A、(√2/2) B、1/2
C、-1/2 D、-(√2/2)
5.函数y=x2+1(x≤0)的反函数是( A)
6.已知空间向量ijk为两两重直的单位向量,向量a=2i+3j+mk,若|a|=√13,则m=(D)
A.-2 B.-1 C.0 D.1
7.给出下列两个命题:
①如果一条直线与一个平面重直,则该直线与该平面的任意一条直线垂直
②以二面角的棱上任意点为端点,在二面角的两个面内分别作射线,则这两条射线所成的角为该二面角的平面角。则:(B)
A ①②都为自命题 B ①为真命题,②为假命题
C ①为假命题,②为真命题 D ①②都为假命题
二、填空题(本大题共4小题,每小题4分,共16分)
21.设函数f(x)=x sin x,则f'(x)=sin x+ x cos x
三、解答题(本大题共4小题,共49分,解答应写出推理、演算步骤)
22在△ABC中,B=120°,BC=4,△ABC的面积为4√3,求AC
【答案】 AC=4√3
23.已知a、b、c成等差数列,a、b、c+1成等比数列,若b=6,求a和c。
【答案】a=4 , c=8
24.已知直线I的斜率为1,1过抛物线L:x2=1/2y焦点,且与L交于A、B两点
(1)求l与L的准线的交点坐标:
(2)求|AB|
【答案】更新中
25.设函数f(x)= x3 -4x
(1)求f’(2)
(2)求f(x)在区间[-1,2]的最大值与最小值。
【答案】更新中
答案由考生回忆,可能会存在偏差,仅供参考!
河南三新时代教育集团有限公司 豫ICP备2022018711号-2
声明:本网站为信息交流网站,主要为广大考生提供报考信息交流指导服务,网站信息为学习交流使用,所有信息以官方发布为准。
24小时免费咨询电话
咨询在线客服加微信咨询
扫码关注我们